
Object Orientated Analysis & Design

CO560 – 20S1

For Bucks Centre for Performing Arts:
To create a system for the purpose of selling tickets for events and shows.

Luke Martin – 21610505

Owen Perry – 21905958

Date Submitted: 17th December 2020

Final Submission Date: 18th December 2020

Table of Contents
Part 1 ... 2

Part 2 ... 7

Part 3 ... 12

Part 4 ... 13

Part 1
Introduction to The Case Study
The Case study that we are working with is that of the Bucks Centre for Performing Arts. They
require a system to allow them to operate their business online. This entails various essential
features such as adding events and shows, holding and purchasing tickets, and manging various
promotions. This project will cover the inclusion of multiple actors with various and differing use
cases for the system.

As designers/analysists we will be aiming to produce detailed documentation that will clearly show
the relevant information that was gathered from the brief in an effective way that clearly
demonstrates these various aspects of the project. This will be done through different diagrams and
such, which will be made using the UML framework to model these concepts clearly and thoroughly.
By the end of the project the client will have access to these resources that we have generated
according to the brief that we have been provided with.

Requirements Table
No. Use case Description
1 Login To save your data and have an account that you make

purchases through.
2 Verify information To ensure that the account is secure and make sure the

person logging in is the owner of the account.
3 View list of upcoming events To show the customer a list consisting of all the

upcoming events that are being hosted.
4 View scheduled shows by date To show the customer a list consisting of all the

upcoming shows of a given event in consequential
order by date starting by the soonest show.

5 Display seat price To show the customer a chart of the seats in the venue,
along with which ones are available, which ones are
not, as well as the different prices that the different
seats in the chart are listed as costing.

6 Select seats from a seating chart To allow the customer to select seats from the chart of
available seats.

7 Hold seats To keep seats held so other users to not take them
while the customer is making their purchase.

8 Purchase seats To pay for seats that have been selected and held by
the customer.

9 Order tickets To pay for seats that have been selected and held by
the customer.

10 Manage promos To allow the venue manager to oversee promotions, as
well as accounting for differing prices such as having
child, student, adult and senior ticket prices.

11 Add To allow the Venue Manager to add new events and
shows to the system.

12 Reschedule To allow the Venue Manager to reschedule events and
shows already in the system.

13 Cancel To allow the Venue Manager to cancel events and
shows already in the system.

14 Change max seats To allow the venue manager to change the maximum
seats per Customer value in each show.

 “High” Level Use Case Descriptions

Use case Description
Login The customer will be prompted to provide login details when

they attempt to do anything on the system such as hold a seat,
purchase a ticket, etc.

Verify information After the customer provides correct login details, they will be
prompted to verify their account by providing some form of
information linked to it, for example a security question, or
verification number sent to the email attached to their account.

View list of upcoming events Shows the customer a list consisting of all the upcoming events
that are being hosted.

View scheduled shows by
date

Shows the customer a list consisting of all the upcoming shows of
a given event in consequential order by date starting by the
soonest show.

Display seat price A chart of the seats in the venue is displayed to the customer
along with which ones are available, which ones are not, as well
as the different prices that the different seats in the chart are
listed as costing.

Select seats from a seating
chart

The customer can select seats that are available on the seating
chart, ready to be held, purchased, or deselected by the
customer.

Hold seats Allows the customer to save a selection of seats so they are not
lost or purchased by someone else while the customer does
other things with the system, these seats will also be displayed as
unavailable to other users of the system while being held.

Purchase seats The customer can pay for a collection of seats that they have
selected or held by either inputting their banking information or
using pre-saved banking information that is linked to their
account.

Order tickets The customer can pay for a collection of seats that they have
selected or held by either inputting their banking information or
using pre-saved banking information that is linked to their
account.

Manage promos The Venue Manager is responsible for setting promotions and
discounts for each show. This sets the priority structure for seats,
accommodating different prices for Adult, Student, Child, and
Senior citizens. Promotions can be unique to each separate
showing and only for specific seats within a show. They can also
be re-used.

Add The Venue Manager can add new events and shows to the
system.

Reschedule The Venue Manager can reschedule events and shows already in
the system.

Cancel The Venue Manager can cancel events and shows already in the
system.

Change max seats The venue Manager can change the maximum seats per
Customer to accommodate for demand, or if a Customer wishes
to pay for a large group of people.

Actors Table
Actor Description
Customer The Customer is anyone who is using the online system to view events for

the Bucks Centre for Performing Arts and can purchase tickets for them.
Venue Manager The manager of the Bucks Centre for Performing Arts. They are responsible

for the organization of the shows / events, their pricing and promotions and
setting the limitations of the maximum number of seats per customer.

Agent Agents are given a contract which allocates them their designated seats to
sell along with the Terms and Conditions to follow while doing so.

Use Case Diagrams

Screen Mock-Up’s
Mock-Up: Verify Information

“Low” Level Use Case Descriptions
Glossary

Mock-Up: Add Show

Logging you

User, for verification purposes please answer a security question set for your account. If
you fail to do so, the login process will be terminated. Enter “Y” for yes, or “N” for no,
without the quotation marks if you wish to accept or immediately terminate this process.

Y / N

Thank you, your security question is as follows:

“What is your mother’s maiden name?”

Please enter your answer below, note the answer is case sensitive.

e.g. Everett

Thank you, your account has been verified.

You will now be redirected, please wait while we finish logging you in.

Logging you

Adding a show / event

User, please conform if you would like to add a show or an event, with either a “S” for show,
or a “E” for event, without the quotation marks.

S / E

Thank you, you have selected Event. Please enter a name for this event below.

e.g. Shrek the musical

Thank you, please enter the details for the event below

Adding your selection to the system, please wait.

Starting date

Finishing date

Description of the show

“Low” Level Use Case Descriptions
Use Case: Verify Information

Use Case: Add Show

Glossary
Term Description
Customer A person who intends to use the system for its intended purpose, e.g., buy

tickets for a show
Venue manager A person who oversees and manages the various events and shows on the

system, as well as dealing with situations that require administrator
permissions, for example hanging the maximum number of seats per
customer.

Agent A person who will be assigned seats at a show attached to an event that they
are to try to sell to the public.

Bucks Centre for
Performing Arts

An institution that puts on shows for the public who purchase tickets for
them. They host events which are to be shown for a variety of dates.

Event A given production. This will be performed in multiple shows.
Show An instance of an event that is one of many for said given event.
Actor Action What a given actor does in line with the system.
System response What the system does in response to an actor’s actions within it.

Actor Action System Response
1. Enters correct login information 2. Prompts user to answer a security

question
3. Accepts prompt 4. Security question is displayed
5. Enters answer 6. Presents message displaying the user

has been verified

Actor Action System Response
1. None 2. Prompts user to choose to add

either a show or an event
3. Makes selection 4. Prompts user to name it
5. Enters name 6. Prompts user to enter details:

 Date
 Time
 Description

7. Enters details 8. Adds the show / event to the
system

Part 2
5C’s method
Collaboration Diagrams

Communication Diagrams

Semi-Class Diagrams
Order Tickets

<<Boundary>>
OrderTicketUI

DisplayEvent()
selectSeats()
PurchaseTicket()

<<Entity>>
Event

assignedPromo
date
time
seatingPlan
getEvent()
PurchaseTicket()

<<Control>>
OrderTicket

selectSeats()
PurchaseTicket()

<<Entity>>
Seat

row
number
price
availability
reserveSeat()
setPurchased()

<<Entity>>
Customer Profile

purchaseinfo
AddPurchaseInfo()

1

1..*

Reschedule Promotion

<<Boundary>>
ReschedulePromoUI

DisplayPromoList()
selectPromo()
ReschedulePromo()

<<Entity>>
PromoList

promoList
getPromoList()

View Upcoming Events

<<Boundary>>
ViewUpcomingUI

DisplayEventList()

<<Entity>>
EventList

eventList
getEventList()

<<Control>>
ReschdulePromo

showPromoDetails()
ReschedulePromo()

<<Entity>>
Promo

title
promoStartDate
promoFinishDate
discount
getPromoDetails()
ReschedulePromo()

<<Entity>>
Event

title
eventDate
eventSeating
assignedPromo
ReschedulePromo()

<<Control>>
ViewUpcoming

1

1..*

1 1..*

assigned to

CRC Method
CRC Cards

Resulting Semi-Class Diagram

<<Boundary>>
VerifyInformationUI

PromptUserToAnswer()
DisplaySecurityQuestion()
VerificationStatusMessage()

<<Control>>
VerifyInformation

userAnswer
GetAnswer()
VerificationStatus()

<<Entity>>
Log-InUser

username
RedirectVerifyInformation()

<<Entity>>
UserVerify

securityQuestion
securityQuestionAnswer
SaveUserInfo()
CheckAnswer()

<<Entity>>
CustomerProfile

securityQuestion
securityQuestionAnswer
GetSecurityQuestion()

Initialised
by

1 1

Sends Information
1

1

Part 3
Class Diagram

Part 4
Conclusion
Throughout part one of this project the goal was to make sure that by the end of it we had a firm
understanding and high comprehension of the brief. This entailed making sure we had nailed down
all the relevant actors as well as making some crucial use cases in line with the brief that the system
could theoretically accommodate. This was achieved effectively, and we believed it set us up well for
the rest of the project and led to a higher level of understanding which helped us create a more
relevant set of classes. As well as this we aimed to come out of it with solid foundations in the
technical specifications that were relevant. This was achieved through the early stages by going
through the brief looking for certain attributes, key phrases and uses of language that could later be
developed upon and fleshed out into things like functions and variables, not just classes, over time.

Part 2 of the project went accordingly. One of us developed some class diagrams using the 5C’s
method. This gave us Collaboration diagrams, Communication diagrams, and finally Semi-Class
diagrams for 3 separate use cases. They were detailed and allowed us to see the ways in which the
classes would interact and perform their functions in relation to the relevant use cases chosen. The
other person used the CRC method, developing CRC cards that showed the classes acting, the
functions they were performing and the ways in which they communicated with other classes in the
process. Through this a Semi-Class diagram was developed in accordance with the CRC cards that
were generated, again showing the relevant, boundary, control, and entities within the process of
the use case.

Part 3 of the project went smoothly. To complete it first the classes were taken from the three 5Cs
models and the CRC models and any of the same or similar classes were consolidated. Then the
"user" class was added to act as a base for the three actors to allow ease of use when any changes or
updates are needed down the line. Finally, the prior class diagrams and their respective links were
taken and worked on from the top down, taking the classes linked closest to the actors and adding
them first (Event and CustomerProfile). Then the classes were as shown in the initial diagrams.

A benefit of using the OO approach, specifically for this project is for one that it can be developed on
a component basis. This means that it has high potential for re-using existing code from other
projects to make the system. This allows us to cut down on time taken to complete the system. This
is important because it also helps with cost because we are not having to make all new code and
components for the project when things from other projects could effectively work and fulfil the
roles that are required of the system being developed. This does however have its drawbacks. For
example, depending on how long ago the existing code was written, it could potentially be legacy
code that does not have the security that the latest software does, along with this you are also
inheriting all and any of the bugs stemming from this code. So, while you may be saving time by re-
using code, you could end up spending twice as long trying to iron out bugs in code that has not
been looked at in years.

In the project we achieved inheritance successfully. For example, all three of the actors identified are
linked to one generalised “user” class. This was done as to allow adjustments to be made to both the
specific actors themselves as well as the base attributes that they all share that are stored within the
generalised “user” parent class.

Encapsulation, while perhaps a little harder to visualise was achieved here. You can see that data is
kept protected by its relevant class. For example, in the CRC method there is a dedicated
“UserVerify” class that handles all the potentially sensitive data. Information is pulled from the
“CustomerProfile” class since that was also protected, this was done because the data was just
needed temporarily to hold and save both the relevant customer security question and the security
question answer.

To achieve polymorphism, you will see through the class diagrams we have kept some of the
function names the same while they get passed through multiple classes, allowing for said classes to
use them differently for their respective use cases. Allowing us to save time from having the same
function written in every class, additionally making the system more efficient.

So far as coupling goes. We have ensured that only those classes relevant to each other, specifically
that are needed for the function of a use case are linked, and only when necessary so that the use
case cannot be completed if they are not linked. While this does add some time to the analysis and
design side of the project it does again make the system that little bit more efficient and means that
if one thing breaks then it will not start a chain reaction leading to multiple classes and thus use
cases ceasing to function properly. Thus, we have spent time ensuring that our classes all have low
coupling unless it is necessary to the functioning of the system.

During the design and analysis segment of the project we ensure that while making the various
diagrams and models that have been displayed in this document that the content of the individual
classes is as cohesive as possible. This meant combing through them more than once ensuring that
all the things in them are only there because they are relevant to that class, and furthermore that
that class is in of itself relevant to a use case that we were focusing on. This means that in the case
that there are things that need changing with the system in the future that the code is easy to
navigate and everything that is needed is in its correct place and that the code itself is not too
bloated thus making it more difficult to comb through it and look for bugs, and less coding general
means fewer potential points of failure in the logic, thus fewer potential bugs in the system.

We would like to finish this document off by saying we think this system has great potential. Not to
mention that we things that it specifically would work well with an object orientated approach.
There are areas in which the brief made it more difficult as well as less difficult to fulfil this in various
places, however we believe, and thing we have adequately displayed that this approach is a very
viable approach and a recommended method for the further development of the system being
made for Bucks Centre for Performing Arts for the purpose of selling tickets for shows and events.

